Home

legislativa tyto směs znse band gap Inspirujte se Nový Zéland Duplikát

Role of magnesium in band gap engineering of sub-monolayer type-II ZnTe  quantum dots embedded in ZnSe: Journal of Applied Physics: Vol 110, No 3
Role of magnesium in band gap engineering of sub-monolayer type-II ZnTe quantum dots embedded in ZnSe: Journal of Applied Physics: Vol 110, No 3

Materials | Free Full-Text | Tunable Band Gap and Conductivity Type of ZnSe/Si  Core-Shell Nanowire Heterostructures
Materials | Free Full-Text | Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures

ZnSe (zinc-blende)
ZnSe (zinc-blende)

Thick-shell CdZnSe/ZnSe/ZnS quantum dots for bright white light-emitting  diodes - ScienceDirect
Thick-shell CdZnSe/ZnSe/ZnS quantum dots for bright white light-emitting diodes - ScienceDirect

Growth of crystalline WO3-ZnSe nanocomposites: an approach to optical,  electrochemical, and catalytic properties | Scientific Reports
Growth of crystalline WO3-ZnSe nanocomposites: an approach to optical, electrochemical, and catalytic properties | Scientific Reports

Temperature Dependence of the Band-Gap Energy and Sub-Band-Gap Absorption  Tails in Strongly Quantized ZnSe Nanocrystals Deposited as Thin Films | The  Journal of Physical Chemistry C
Temperature Dependence of the Band-Gap Energy and Sub-Band-Gap Absorption Tails in Strongly Quantized ZnSe Nanocrystals Deposited as Thin Films | The Journal of Physical Chemistry C

Band gap of ZnSe nanocrystals deposited at temperature 318K at... |  Download Scientific Diagram
Band gap of ZnSe nanocrystals deposited at temperature 318K at... | Download Scientific Diagram

Tailoring the Band Gap in the ZnS/ZnSe System: Solid Solutions by a  Mechanically Induced Self-Sustaining Reaction | Inorganic Chemistry
Tailoring the Band Gap in the ZnS/ZnSe System: Solid Solutions by a Mechanically Induced Self-Sustaining Reaction | Inorganic Chemistry

Figure 3 from Moving past 2.0eV: Engineered ZnSe-GaAs alloys for  multijunction solar cells | Semantic Scholar
Figure 3 from Moving past 2.0eV: Engineered ZnSe-GaAs alloys for multijunction solar cells | Semantic Scholar

Band-gap engineering of ZnSe quantum dots via a non-TOP green synthesis by  use of organometallic selenium compound - ScienceDirect
Band-gap engineering of ZnSe quantum dots via a non-TOP green synthesis by use of organometallic selenium compound - ScienceDirect

Band gap energies and relative band offsets for CdTe, CdSe and ZnSe. 16,17  | Download Scientific Diagram
Band gap energies and relative band offsets for CdTe, CdSe and ZnSe. 16,17 | Download Scientific Diagram

The effect of Mn-doped ZnSe passivation layer on the performance of  CdS/CdSe quantum dot-sensitized solar cells
The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells

Pritzker School of Molecular Engineering | The University of Chicago
Pritzker School of Molecular Engineering | The University of Chicago

Pushing the Band Gap Envelope of Quasi-Type II Heterostructured  Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy  Material Advances
Pushing the Band Gap Envelope of Quasi-Type II Heterostructured Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy Material Advances

Applied Sciences | Free Full-Text | Formation of a Colloidal CdSe and ZnSe  Quantum Dots via a Gamma Radiolytic Technique
Applied Sciences | Free Full-Text | Formation of a Colloidal CdSe and ZnSe Quantum Dots via a Gamma Radiolytic Technique

Electronic band structures of ZnSe determined with mBJ-LDA (a) and... |  Download Scientific Diagram
Electronic band structures of ZnSe determined with mBJ-LDA (a) and... | Download Scientific Diagram

Table 1 from Band-gap engineering of CdS, CdSe and ZnSe first-principles  calculations | Semantic Scholar
Table 1 from Band-gap engineering of CdS, CdSe and ZnSe first-principles calculations | Semantic Scholar

Energy band gap determination of ZnSe nanoparticles. The UV-visible... |  Download Scientific Diagram
Energy band gap determination of ZnSe nanoparticles. The UV-visible... | Download Scientific Diagram

Electronic band structure of the ordered Zn0.5Cd0.5Se alloy calculated by  the semi-empirical tight-binding method considering second-nearest neighbor
Electronic band structure of the ordered Zn0.5Cd0.5Se alloy calculated by the semi-empirical tight-binding method considering second-nearest neighbor

A beyond near-infrared response in a wide-bandgap ZnO/ZnSe coaxial nanowire  solar cell by pseudomorphic layers - Journal of Materials Chemistry A (RSC  Publishing) DOI:10.1039/C4TA02971B
A beyond near-infrared response in a wide-bandgap ZnO/ZnSe coaxial nanowire solar cell by pseudomorphic layers - Journal of Materials Chemistry A (RSC Publishing) DOI:10.1039/C4TA02971B

Materials | Free Full-Text | Tuning the Optical Band Gap of Semiconductor  Nanocomposites—A Case Study with ZnS/Carbon
Materials | Free Full-Text | Tuning the Optical Band Gap of Semiconductor Nanocomposites—A Case Study with ZnS/Carbon

Controllable growth of ZnO–ZnSe heterostructures for visible-light  photocatalysis - CrystEngComm (RSC Publishing) DOI:10.1039/C3CE42068J
Controllable growth of ZnO–ZnSe heterostructures for visible-light photocatalysis - CrystEngComm (RSC Publishing) DOI:10.1039/C3CE42068J

Frontiers | Bandgap Engineering of Indium Phosphide-Based Core/Shell  Heterostructures Through Shell Composition and Thickness
Frontiers | Bandgap Engineering of Indium Phosphide-Based Core/Shell Heterostructures Through Shell Composition and Thickness

The effect of Mn-doped ZnSe passivation layer on the performance of  CdS/CdSe quantum dot-sensitized solar cells
The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells

Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te)  interfaces applied to solar cells: a PBE+U theoretic
Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te) interfaces applied to solar cells: a PBE+U theoretic

A theoretical study on the B3 phases of ZnSe: Structural and electronic  properties
A theoretical study on the B3 phases of ZnSe: Structural and electronic properties

Electronic band structure of the ordered Zn0.5Cd0.5Se alloy calculated by  the semi-empirical tight-binding method considering second-nearest neighbor
Electronic band structure of the ordered Zn0.5Cd0.5Se alloy calculated by the semi-empirical tight-binding method considering second-nearest neighbor