Home

Dlouho vnější Potlačit band gap of c44h33n hustota Bezmocnost Poškozené

Band gap tuning of a-Si:H from 1.55 eV to 2.10 eV by intentionally  promoting structural relaxation - ScienceDirect
Band gap tuning of a-Si:H from 1.55 eV to 2.10 eV by intentionally promoting structural relaxation - ScienceDirect

Band gap tuning of a-Si:H from 1.55 eV to 2.10 eV by intentionally  promoting structural relaxation - ScienceDirect
Band gap tuning of a-Si:H from 1.55 eV to 2.10 eV by intentionally promoting structural relaxation - ScienceDirect

Wide-Range Band-Gap Tuning and High Electrical Conductivity in La- and  Pb-Doped SrSnO3 Epitaxial Films | ACS Applied Materials & Interfaces
Wide-Range Band-Gap Tuning and High Electrical Conductivity in La- and Pb-Doped SrSnO3 Epitaxial Films | ACS Applied Materials & Interfaces

Wide-Range Band-Gap Tuning and High Electrical Conductivity in La- and  Pb-Doped SrSnO3 Epitaxial Films | ACS Applied Materials & Interfaces
Wide-Range Band-Gap Tuning and High Electrical Conductivity in La- and Pb-Doped SrSnO3 Epitaxial Films | ACS Applied Materials & Interfaces

Band-Gap Engineering in High-Temperature Boron-Rich Icosahedral Compounds |  The Journal of Physical Chemistry C
Band-Gap Engineering in High-Temperature Boron-Rich Icosahedral Compounds | The Journal of Physical Chemistry C

Band-Gap Engineering in High-Temperature Boron-Rich Icosahedral Compounds |  The Journal of Physical Chemistry C
Band-Gap Engineering in High-Temperature Boron-Rich Icosahedral Compounds | The Journal of Physical Chemistry C

Band gap tuning of a-Si:H from 1.55 eV to 2.10 eV by intentionally  promoting structural relaxation - ScienceDirect
Band gap tuning of a-Si:H from 1.55 eV to 2.10 eV by intentionally promoting structural relaxation - ScienceDirect

Band gap determination of graphene, h-boron nitride, phosphorene, silicene,  stanene, and germanene nanoribbons - IOPscience
Band gap determination of graphene, h-boron nitride, phosphorene, silicene, stanene, and germanene nanoribbons - IOPscience

Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si:  Journal of Applied Physics: Vol 86, No 8
Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si: Journal of Applied Physics: Vol 86, No 8

Tuning the Electronic Band Gap of Oxygen-Bearing Cubic Zirconium Nitride:  c-Zr3–x(N1–xOx)4 | ACS Applied Electronic Materials
Tuning the Electronic Band Gap of Oxygen-Bearing Cubic Zirconium Nitride: c-Zr3–x(N1–xOx)4 | ACS Applied Electronic Materials

Wide-Range Band-Gap Tuning and High Electrical Conductivity in La- and  Pb-Doped SrSnO3 Epitaxial Films | ACS Applied Materials & Interfaces
Wide-Range Band-Gap Tuning and High Electrical Conductivity in La- and Pb-Doped SrSnO3 Epitaxial Films | ACS Applied Materials & Interfaces

Band-Gap Engineering in High-Temperature Boron-Rich Icosahedral Compounds |  The Journal of Physical Chemistry C
Band-Gap Engineering in High-Temperature Boron-Rich Icosahedral Compounds | The Journal of Physical Chemistry C

Band gap narrowing and radiative efficiency of silicon doped GaN
Band gap narrowing and radiative efficiency of silicon doped GaN

Band gap narrowing and radiative efficiency of silicon doped GaN
Band gap narrowing and radiative efficiency of silicon doped GaN

Tuning the Electronic Band Gap of Oxygen-Bearing Cubic Zirconium Nitride:  c-Zr3–x(N1–xOx)4 | ACS Applied Electronic Materials
Tuning the Electronic Band Gap of Oxygen-Bearing Cubic Zirconium Nitride: c-Zr3–x(N1–xOx)4 | ACS Applied Electronic Materials

Band-Gap Engineering in High-Temperature Boron-Rich Icosahedral Compounds |  The Journal of Physical Chemistry C
Band-Gap Engineering in High-Temperature Boron-Rich Icosahedral Compounds | The Journal of Physical Chemistry C

Band gap of C3N4 in the GW approximation - ScienceDirect
Band gap of C3N4 in the GW approximation - ScienceDirect

Tuning the Electronic Band Gap of Oxygen-Bearing Cubic Zirconium Nitride:  c-Zr3–x(N1–xOx)4 | ACS Applied Electronic Materials
Tuning the Electronic Band Gap of Oxygen-Bearing Cubic Zirconium Nitride: c-Zr3–x(N1–xOx)4 | ACS Applied Electronic Materials

Band gap of C3N4 in the GW approximation - ScienceDirect
Band gap of C3N4 in the GW approximation - ScienceDirect

Band-Gap Engineering in High-Temperature Boron-Rich Icosahedral Compounds |  The Journal of Physical Chemistry C
Band-Gap Engineering in High-Temperature Boron-Rich Icosahedral Compounds | The Journal of Physical Chemistry C

Wide-Range Band-Gap Tuning and High Electrical Conductivity in La- and  Pb-Doped SrSnO3 Epitaxial Films | ACS Applied Materials & Interfaces
Wide-Range Band-Gap Tuning and High Electrical Conductivity in La- and Pb-Doped SrSnO3 Epitaxial Films | ACS Applied Materials & Interfaces

Wide-Range Band-Gap Tuning and High Electrical Conductivity in La- and  Pb-Doped SrSnO3 Epitaxial Films | ACS Applied Materials & Interfaces
Wide-Range Band-Gap Tuning and High Electrical Conductivity in La- and Pb-Doped SrSnO3 Epitaxial Films | ACS Applied Materials & Interfaces

Band gap of C3N4 in the GW approximation - ScienceDirect
Band gap of C3N4 in the GW approximation - ScienceDirect

Transition of wide-band gap semiconductor h-BN(BN)/P heterostructure via  single-atom-embedding - Journal of Materials Chemistry C (RSC Publishing)
Transition of wide-band gap semiconductor h-BN(BN)/P heterostructure via single-atom-embedding - Journal of Materials Chemistry C (RSC Publishing)